-x^2+30x+4x=-2x^2+14x+6

Simple and best practice solution for -x^2+30x+4x=-2x^2+14x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -x^2+30x+4x=-2x^2+14x+6 equation:



-x^2+30x+4x=-2x^2+14x+6
We move all terms to the left:
-x^2+30x+4x-(-2x^2+14x+6)=0
We add all the numbers together, and all the variables
-1x^2-(-2x^2+14x+6)+34x=0
We get rid of parentheses
-1x^2+2x^2-14x+34x-6=0
We add all the numbers together, and all the variables
x^2+20x-6=0
a = 1; b = 20; c = -6;
Δ = b2-4ac
Δ = 202-4·1·(-6)
Δ = 424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{424}=\sqrt{4*106}=\sqrt{4}*\sqrt{106}=2\sqrt{106}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{106}}{2*1}=\frac{-20-2\sqrt{106}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{106}}{2*1}=\frac{-20+2\sqrt{106}}{2} $

See similar equations:

| -2/7z=6/13 | | 16+5(x-3)=61 | | 5x+4x–3x+x+x=8 | | (Y-8)/3=y/7 | | 1/4h+9=-7 | | -2/3+4/9=x | | 5w-2w-w=8 | | T(n)=2(3)n | | 3(-2/3+4/9)=x | | -3/4x=6/7 | | 1/2x+30+4x=-2x+14x+6 | | 4.2g=-21 | | 2(4x-10)=-48 | | -6y+15=-3(2y-5) | | 5w–2w-w=8 | | f/6-6=15 | | 5(x–4)+3x–9x=6–(2x+5)+8x | | 5w–2w–w=8 | | +4=-5(x-3) | | 12h+3h-9h+h-11h+7h+16h=8 | | 5t-4t=11 | | a÷4+8=15 | | -5x+9=-3x-3 | | 5n+3=4n=30 | | 6d-d=20 | | (x-4)(x-2)=24 | | 8k-6k=10 | | 12x-8x=30-36x | | 4(x-2)+3=3x-1+x | | x*x+15=800 | | a|4+8=15 | | 5x/2+3=28 |

Equations solver categories